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Abstract
The collision of a low-energy positron, which impinges on a crystalline surface, with a valence
electron may result in the emission of a spatially separated time-correlated electron–positron
pair. We present a method for calculating the cross section for this positron surface reaction
channel, which we briefly refer to as (p, ep) in analogy to electron-induced pair emission
(e, 2e). The two-particle final state is represented by a product of an electron and a positron
diffraction state coupled by a ‘correlation factor’, which accounts for the screened Coulomb
interaction. The electron–solid and positron–solid quasi-particle potentials are based on
first-principles calculations within density functional theory. Numerical (p, ep) results are
presented for Cu(111) and compared to their (e, 2e) counterparts. Energy distributions for
constant emission angles reflect, to a large extent, the valence electron density of states.
In equal-energy (p, ep) angular distributions, the Coulomb interaction produces a central
accumulation zone—in contrast to a depletion zone for (e, 2e)—the relative weight and the
extension of which are subject to ‘matrix element effects’. At larger angles sharp features arise
from single-particle surface resonances.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The use of positrons in solid state and surface physics has a
long-standing tradition (cf, e.g., reviews [1–3] and references
therein). For a low-energy positron beam impinging on a
surface, well-known and intensively studied reaction channels
include in particular low-energy positron diffraction (LEPD),
re-emission after thermalization and pair annihilation.

In a recent pioneering experiment [4], a new reaction
channel has been made accessible: the momentum-resolved
measurement of a spatially separated time-correlated electron–
positron pair, which is emitted from a crystalline surface, has
been demonstrated to be feasible. This opens a new way of
obtaining information on the correlation between positrons and
electrons. Since positrons and electrons are distinguishable
particles, the pair correlation in positron-induced electron–
positron emission (referred to in brief in the following as
(p, ep)) is solely due to the Coulomb interaction. This is
in contrast to the established technique of electron-induced
electron–electron emission (e, 2e) (cf [5–11] and references
therein) in the hitherto used set-ups without spin analysis, in
which the pair correlation arises from a combination of the
Coulomb interaction and the exchange interaction.

On the theoretical side, a general many-body expression
for the (p, ep) reaction cross section from crystal surfaces
has previously been given [12] and evaluated in a low-order
multiple scattering expansion, yielding in particular insight
into pair diffraction effects and into the principal differences
between (p, ep) and (e, 2e).

In the present work, we calculate the (p, ep) reaction cross
section from crystal surfaces in a more realistic way, which
goes beyond the earlier work [12] in the following respects:

(a) the electron–solid and positron–solid interaction poten-
tials are derived from first-principles electronic struc-
ture calculations within density functional theory, with
the positron–solid potential containing an attractive cor-
relation part, which (at low energies) is about six times
stronger than that of the electron–solid potential;

(b) for these potentials, multiple scattering is taken into
account fully, i.e. we have low-energy electron diffraction
(LEED) and low-energy positron diffraction (LEPD)
states;

(c) the electron–positron two-particle final state is represented
by a product of an LEED and an LEPD state coupled
by a ‘correlation factor’, which is obtained by solving
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the relative-particle equation containing the screened
electron–positron interaction.

Numerical (p, ep) results are presented for Cu(111), with
an emphasis on the manifestation of the Coulomb correlation
and its interplay with matrix element effects in angular
distributions. Comparison with their counterparts for (e, 2e)
with definite opposite spins, i.e. in the absence of exchange,
shows massive differences which are due to different single-
particle potentials and a stronger Coulomb correlation. For
spin-unresolved (e, 2e), additional differences arise from the
exchange interaction.

Our paper is organized as follows. In section 2 we present
a general (p, ep) reaction cross-section expression and two
fundamental ingredients needed for evaluating it: (a) the two-
particle wavefunction of a positron and an electron coupled
by the bare or a screened Coulomb interaction, illustrated
graphically by the pair correlation function between a plane-
wave positron and a plane-wave electron (section 2.2) and
(b) the single quasi-particle potentials describing the positron–
crystal and the electron–crystal interaction (section 2.3). In
section 3 we present, for the Cu(111) surface, numerically
calculated (p, ep) energy and angular distributions and compare
them to their counterparts in (e, 2e) with and without spin
resolution.

2. Theory

2.1. Reaction cross section

For a positron with low energy E1, surface-parallel momentum
�k‖

1 and spin σ1 incident on a crystalline surface, the reaction
cross section for the correlated emission of a positron with
energy E3, surface-parallel momentum �k‖

3 and spin σ3 and an
electron with energy E4, surface-parallel momentum �k‖

4 and
spin σ4 can be written as

I σ1
σ3,σ4

= k3k4

k1

∑

σ2

〈3, 4|U |1〉
(

− 1

π

)

× Im Gr
2(E2, �k‖

2 , σ2)〈1|U |3, 4〉, (1)

which is formally the same as the expression for the reaction
cross section for electron-induced electron pair emission (e,
2e), which has been previously derived and discussed in
detail (cf the review article [5] and references therein). In
equation (1) |1〉 is a low-energy-positron-diffraction (LEPD)
state with quantum numbers set asymptotically by the positron
gun. Gr

2 is the spin- and �k‖-resolved valence electron Green
function with E2 = E3 + E4 − E1 and �k‖

2 = �k‖
3 + �k‖

4 − �k‖
1 + �g‖

such that energy and surface-parallel momentum modulo a
surface reciprocal lattice vector �g‖ are conserved. U denotes
the attractive screened Coulomb interaction between positron
and electron. |3, 4〉 is the U -correlated positron–electron final
state with boundary conditions such that a positron with energy
E3 and surface-parallel momentum component �k‖

3 arrives at
one detector and an electron with E4 and �k‖

4 at the other
detector.

While equation (1) is formally identical for (p, ep) and (e,
2e), its further evaluation for (p, ep) differs strongly from that

for (e, 2e) in two main respects: (a) correlation and (absence
of) exchange in the two-particle state |3, 4〉 and (b) the effective
single-positron potential, which determines the LEPD states.
In the following, we focus on these two problems in (p, ep).

2.2. Electron–positron pair correlation

The correlated electron–positron state |3, 4〉 in equation (1) is
an eigenstate of the two-particle Hamiltonian:

H = Hp + He + U, (2)

where U is the electron–positron interaction, and Hp and
He are two single-particle Hamiltonians with effective single-
particle potentials Vp and Ve, which represent the interaction of
the positron and the electron with the semi-infinite crystalline
solid. Our method of calculating positron–electron states is
analogous to the one which we have developed for correlated
two-electron states and presented in detail [7]. In this section,
we therefore only outline some essential features of the method
and then illustrate the electron–positron pair correlation by
numerical results.

Denoting the eigenfunctions of Hp and He in equation (2)
by ϕp(�r1) and ϕe(�r2), respectively, the eigenstate φ(�r1, �r2) of
H is expressed in the form

φ(�r1, �r2) = ϕp(�r1)ϕe(�r2) f c(�r1, �r2), (3)

where f c(�r1, �r2) is a ‘Coulomb correlation factor’. In the
absence of Coulomb interaction, i.e. for U = 0, f c = 1, and
the two-particle state is simply a product of two single-particle
states.

The single-particle states ϕp and ϕe are (time-reversed)
LEPD and LEED states, respectively, and f c(�r1, �r2) is
approximated by the correlation factor f c(�r; �k) between two
plane waves exp(i�k1�r1) and exp(i�k2�r2) with relative coordinate
�r = �r1 − �r2 and relative momentum �k = �k1 − �k2. For a given
repulsive or attractive central potential U(r) (e.g. a screened
Coulomb potential inside the solid) f c(�r; �k) is calculated
numerically by solving the Schrödinger equation (in atomic
units with energy in Hartree)

(
− 1

m
� + U(r)

)
ϕ(�r; �k) = k2

4m
ϕ(�r; �k) (4)

for the relative-particle wavefunction ϕ(�r; �k) := ei 1
2
�k�r f c(�r; �k).

Before showing some numerical results, we point out that
our correlation factor f c(�r; �k) is closely related to the two-
particle density ρ(�r1, �r2) in the case that the single-particle
states ϕp and ϕe are plane waves. From equation (3) one then
obtains

ρ(�r1, �r2) = | f c(�r; �k)|2. (5)

Since the single-particle densities are normalized to unity,
this is identical with the pair correlation function, i.e. the
probability of finding the electron at �r2 if the positron is at
�r1. In the case of two plane-wave electrons with anti-parallel
spins, the corresponding | f c(�r; �k)|2 can be understood as the
probability of finding an electron with spin |−s〉 at �r2 if an
electron with fixed spin |s〉 is at �r1 (cf [7]).
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Figure 1. Pair correlation function ρ(�r1 = 0, �r2 = �r) = | f c(�r; �k)|2 (cf equation (5)) between two plane-wave electrons of fixed anti-parallel
spins (left-hand panels) and between a plane-wave positron and a plane-wave electron (right-hand panels) with relative momentum
�k = �k1 − �k2 along the z axis. (a) | f c(x = 0, y = 0, z; k = 2)|2 for bare Coulomb interaction (solid (black) line) and for a
Thomas–Fermi-screened Coulomb interaction ± exp(−qTFr)/r with qTF = 1 (in atomic units) (dashed (red) line). (b) Contour plots of
| f c(x, y = 0, z; k = 2)|2 for bare (top panels) and for Thomas–Fermi-screened (bottom panels) Coulomb interaction.

In figure 1 we show, for the bare Coulomb potential ±1/r
and for a screened one ± exp(−qTFr)/r in the Thomas–Fermi
approximation, the dependence of the pair correlation function
ρ(�r1 = 0, �r2 = �r) = | f c(�r; �k)|2 (equation (5)) of an electron–
positron pair and an anti-parallel spin electron–electron pair on
x and z for a fixed momentum difference �k = (0, 0, k) along
the z axis. Since the correlation must be maximal for �r1 = �r2,

i.e. �r = �r1 −�r2 = 0, it is immediately plausible that | f c(�r; �k)|2
exhibits at �r = 0 a maximum in the ‘attractive case’ of the
electron–positron pair and a minimum in the ‘repulsive case’
of the electron–electron pair.

The spatial dependence of | f c|2 can be semi-quantitatively
understood by noting that | f c| = |ϕ| (cf equation (4)) and
by approximating the relative-particle wavefunction ϕ by a

3
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function ϕ̃ composed of an incident wave and a scattered wave:

ϕ̃(�r) = eiκz + F(	)eiκr/r (6)

where κ = k/2, F is a scattering amplitude and 	 the
scattering angle (defined with respect to the positive z axis).
Obviously, ϕ̃ is rotationally symmetric about the z axis. For
x = 0 and y = 0, the z dependence is easily evaluated
further. In the negative z direction we have ϕ̃(0, 0, z) =
exp(−iκ |z|)+F(π) exp(iκ |z|)/|z||ϕ̃|. It thence oscillates with
decreasing amplitude and with a wavelength π/κ = 2π/k. In
the positive z direction ϕ̃(0, 0, z) = exp(−iκz)(1 + F(0)/z)
and thence |ϕ̃| = |1 + F(0)/z|, i.e. going monotonically
towards unity. The latter behaviour is seen in figure 1 for the
screened potential, for which the approximation equation (6)
is more appropriate than for the bare Coulomb potential. In
summary, we thus have for z < 0 an oscillatory behaviour
for both the electron–electron and the electron–positron pair,
whereas in the half-space z > 0 there is a correlation hole in
the electron–electron case and a correlation hill in the electron–
positron case.

The complete spatial dependence of the pair correlation
function | f c(�r; �k)|2 is implicit in the (x, z) plane contour plot
in figure 1(b), since | f c(�r; �k)|2 is rotationally symmetric about
the z axis for the present choice of �k = (0, 0, k). As can
be seen from figure 1(b), the maximal height of the electron–
positron correlation hill is larger than the maximal depth of
the electron–electron correlation hole. This is possible due to
the fact that the probability density for finding two electrons
at r = 0 cannot be less than zero, whereas for the probability
density for an electron and a positron there is no obvious upper
limit. This difference in the strength of the correlation between
two electrons on the one hand and a positron and an electron
on the other hand becomes even more pronounced for smaller
k, as is demonstrated by figure 2.

2.3. Single-particle potentials

In the following, we specify, for the case of the Cu(111)
surface, the single-particle potentials required for calculating
the four quasi-particle states, which enter, together with the
Coulomb correlation factor f c (cf equation (3), in the pair
emission cross section (equation (1))).

As a common basis, we first performed a self-consistent
calculation of the electronic structure of the ground state
of Cu(111) within density functional theory by means of
the full-potential linearized augmented plane-wave (FLAPW)
program package FLEUR [13], using a nineteen-layer film
geometry and a local density approximation (LDA) [14]
for the exchange–correlation potential. We thus obtained
charge density ρ(�r), Coulomb potential V −

coul(�r) and total
potential V −

tot(�r) = V −
coul(�r) + V −

xc (�r), where V −
xc (�r) denotes

the exchange–correlation part. Our calculated electron work
function for Cu(111) is 5.20 eV, i.e. close to the experimental
value 4.94 ± 0.3 eV [15]. The occupied bulk bands are in very
good agreement with those from other self-consistent ground
state calculations using the same LDA (cf [16] and references
therein). Casting the shape-unrestricted ground state potential

Figure 2. Pair correlation function | f c(x, y = 0, z; k = 0.2)|2
(cf equation (5)) for a Thomas–Fermi-screened Coulomb interaction
with qTF = 0.56 Bohr−1: (a) between a plane-wave positron and a
plane-wave electron, (b) between two plane-wave electrons of fixed
anti-parallel spins.

V −
tot(�r) into the muffin tin form and employing it in a layer-

Kohn–Korringa–Rostoker (KKR) calculation yields practically
the same bands. Compared to their counterparts determined
experimentally by photoemission [16], the calculated sp-like
bands agree fairly well but the d-bands are about 0.5 eV too
high in energy.

A real effective potential for the occupied one-electron
states in (p, ep) and (e, 2e) was therefore constructed from our
self-consistent charge density ρ(�r) using a non-local density
approximation [16]. The resulting bands are in good agreement
with experiment. The real potential was augmented by an
energy-dependent imaginary part −0.05 − (E − EF)

2/((E −
EF)

2 +0.49) eV for the occupied states and −0.08(E − EF) eV
for the LEED-like states.

In the vacuum region (in the half-space z < 0), where
LDA ground state potentials fail to have the asymptotic image
potential form, we used a local surface barrier model V (z)
(cf [17]), which has as adjustable parameters an image plane
position z1 and a matching plane position z2 < z1. For z < z2,
V (z) has (in atomic units) the image form 1/(4(z − z1)). For
z2 < z < 0, V (z) is a third-order polynomial such that it
matches, up to the first derivative, and the image potential form
at z2 and the real inner potential V0r at z = 0. The value of V0r

affects not only the height but also the shape of the barrier. It
is, however, not an adjustable parameter but rather determined

4
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by our ground state inner potential together with the above-
mentioned real self-energy correction. The choice of z1 and z2

is guided by the near-surface form of the planar average of the
ground state surface potential.

For the interaction of the positron with the semi-infinite
crystal, we first constructed a shape-unrestricted ground state
potential V +

tot as the sum of a Coulomb potential, which is
the sign-reversed Coulomb potential V −

coul(�r) from the electron
ground state calculation and an attractive positron–electron
correlation potential V +

corr(�r). The latter was constructed
similarly as described in detail in previous work [18, 19],
but based on the charge density ρ(�r) from our self-consistent
FLAPW film calculation. Inside the solid, we employed, in
local density approximation V +

corr(ρ(�r)), correlation energies
of a positron in an electron gas of density ρ from a many-body
calculation [20] in a convenient parametrized form [21]. These
correlation energies agree well with more recent many-body
calculations [22].

In the vacuum region, the actual positron potential V +
tot(�r)

has, in contrast to a local density approximation form, image
behaviour far from the surface and forms a ‘correlation
well’ above the topmost atomic layer before joining the
potential inside the solid. It hosts a Rydberg-like series
of bound positron surface states, the lowest one of which
has been observed at −2.8 eV (below the vacuum zero) for
Cu(111) [23]. A potential, which satisfies these requirements,
is provided by our above form V (z) of the electron surface
potential barrier, with suitable parameters z1 and z2 and a
smooth transition to the bulk inner potential for a positron,
which is, as we shall show below (in figure 3 and its context),
much smaller than its counterpart for an electron.

Using the above V +
tot(�r) in an FLAPW/FLEUR [13]

calculation of positron states, we obtained firstly the lowest
positron bulk state of Cu(111) at 0.3 eV above the vacuum
threshold, implying a positron work function of −0.3 eV close
to the experimental value of −0.4 eV [23]. Secondly, the
lowest-energy surface state is at −2.8 eV, in agreement with
experiment [23]. While the latter value requires a special
choice of our surface barrier parameters, the bulk state energies
and thence the positron work function do not depend on the
surface barrier model, i.e. arise from first principles (within the
framework of the local density approximation).

Our total positron potential V +
tot(�r) is shown as a 3D plot

in figure 3(a) and, together with its electrostatic and correlation
parts V +

coul(�r) and V +
corr(ρ(�r)), along a line normal to the surface

in figure 3(b). Inside the solid, the interstitial average of
V +

tot(�r), which corresponds to the inner potential in a muffin tin
approximation, is at 5.26 eV below the vacuum level, which
is much less than its counterpart for an electron (12.91 eV).
It is interesting to note that the positron correlation potential
part V +

corr(ρ(�r)) is substantially stronger than the correlation
potential for an electron. In particular, its interstitial average
of −8.63 eV (cf figure 3(b)) is about six times larger than its
electron counterpart (−1.4 eV). This is in line with our above
finding (section 2.2) that the pair correlation function | f c|2 for
small r is much stronger for an electron–positron pair than for
an electron–electron pair (cf figures 1 and 2).

The quasi-particle potentials for the two positron states
(the incident and the emitted one) in the (p, ep) reaction cross

Figure 3. Positron potentials at the Cu(111) surface (relative to the
vacuum zero): (a) 3D plot of the total potential V +

tot(x = 0, y, z); the
z axis is normal to the surface and the topmost internuclear plane is
located at z = 0; x is along the [1,−1, 0] direction and y along
[−1,−1, 2] (cf inset in figure 3(b)). (b) Total potential
V +

tot(x = 0, y = 0, z) (black solid line) and its constituent parts V +
coul

(red dashed line) and V +
corr (blue dotted line). The corresponding

horizontal lines mark the respective interstitial average potentials and
the green dashed horizontal line indicates the energy E0 of the lowest
positron bulk state (0.3 eV above the vacuum level). Denoting the
layer stacking parallel to the surface by (abc), the black-filled circles
at the z axis indicate a layers, the grey-filled circles b layers and the
empty circles c layers. Note that the chosen (0, 0, z) line goes only
through a nuclei.

section were constructed by first casting the above V +
tot(�r) into

the muffin tin form, the latter yielding practically the same
positron bulk band structure and work function as the full
potential. Since the two relevant positron states are (except for
the time reversal of the emitted state) the same as in low-energy
positron diffraction (LEPD), we estimated the real self-energy
correction by calculating LEPD spectra and comparing them
to their experimental counterparts [24]. While a reduction of
the real inner potential (corresponding to a reduction of the
correlation potential) is inferred above about 60 eV, use of our
original inner potential appears appropriate at energies below
30 eV for which we carried out pair emission calculations. The
imaginary part of the effective potential has been estimated to
be about twice as strong for a positron than for an electron
[25]. With the latter as described above, we therefore used
for the positrons the energy-dependent expression −0.16(E −
EF) eV. Since the damping of the incident and the emitted
positron state is thus stronger than in the electron case, one

5
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Figure 4. �k‖- and layer-resolved density of initially occupied quasi-electron states Nm(E, kx , ky) on Cu(111). To reveal more details, the
imaginary potential part has been chosen as a very small constant (0.005 eV). (a) For bulk layer: Nb(E, kx , ky = 0) for �k‖ along the 
–K
direction in the surface Brillouin zone (SBZ) and Nb(E, kx = 0, ky) for �k‖ along 
–M. (b) For bulk layer: Nb(E, kx , ky) for fixed
E = EF − 0.4 eV. The hexagon indicates the SBZ. (c) As (a) but N1 for topmost (surface) layer. (d) As (b) but N1 for topmost (surface) layer.

can expect (p, ep) to be generally more surface-sensitive than
(e, 2e).

3. Pair emission results for Cu(111)

In the following, we present some typical positron-induced
electron–positron pair emission (referred to in brief in the
following as ‘(p, ep)’) results calculated for Cu(111). We
discuss them in comparison with corresponding (e, 2e) results
and demonstrate the manifestation of the Coulomb correlation
in the emitted pair.

As a prerequisite, it is useful to visualize (in figure 4) the
initially bound electron states by means of the �k‖- and layer-
resolved density of occupied quasi-electron states (LDOS)
Nm(E, kx, ky), where m is the layer index. Nm has been
calculated using the real effective electron potential, which
we obtained from our FLAPW ground state charge density

(cf section 2.3), augmented only by a very small imaginary part
(0.005 eV) in order to reveal more details. The bulk LDOS
shown in figures 4(a) and (b) corresponds to the projection
of the bulk band structure onto the surface. In particular, in
figure 4(a) the features at �k‖ = 0 reflect very closely the
experimental and calculated bulk band structures along 
–L
shown in figure 2(b) of [16], with the sp gap near the Fermi
energy and the onset of the d bands at −2.2 eV. In the first-
layer LDOS (figures 4(c) and (d)) we would like to emphasize
three features: around the centre of the first surface Brillouin
zone (SBZ) (
) the Shockley surface state residing in the sp
gap near EF and the Tamm-like surface resonances in the d-
band region (cf [16] and references therein), and near M the
Tamm surface state, which was also previously observed by
photoemission [26].

In order to assess to what extent pair emission
spectroscopy may reflect the valence electron LDOS, we now

6
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Figure 5. Pair emission spectra I (E3, E4) from Cu(111) for coplanar symmetric set-up with normal incidence of primary positron or electron
of energy E1 = 30 eV and emitted particles with energies E3 and E4 and polar angle ϑ3 = ϑ4 = 30◦. The reaction plane is the (x, z) plane
(with x along the [1,−1, 0] direction and z normal to the surface). The (y, z) plane is a mirror plane of the semi-infinite crystal. Since the
SOC-induced dependence of the spectra on the spin of the primary particle is of the order of a few per cent for (e, 2e) and at least an order of
magnitude smaller for (p, ep), we show here only the spectra averaged over the primary spin, i.e. for an unpolarized primary beam.
(a) First-layer valence electron density of states N1(E3, E4) = N1(E2, kx ; ky = 0). The diagonal axis represents the valence electron energy
E2 with respect to the Fermi energy. The axis normal to it is associated with kx = k‖

2 (cf equation (7)) as indicated by the iso-k‖
2 lines (in

atomic units). The calculation was done with the same energy-dependent imaginary potential part (cf section 2.3), which was used for the
valence electron in the (p, ep) and (e, 2e) calculations. (b) I (E3, E4) for (p, ep). (c) I (E3, E4) for spin-unresolved (e, 2e). (d) I (E3, E4) for
(e, 2e) with fixed anti-parallel spins of the emitted electrons.

consider a symmetric coplanar set-up with normal incidence
of the primary particle (i.e. �k‖

1 = 0) and fixed polar angles
ϑ3 = ϑ4 of the two emitted particles. For a given reaction
plane and primary energy E1, the (p, ep) and the (e, 2e) cross
sections are then functions I (E3, E4) of the energies of the two
outgoing particles and can be represented by a contour plot in
the (E3, E4) plane. For each pair (E3, E4), a pair (E2, �k‖

2) of
the valence electron is determined as E2 = E3 + E4 − E1 and
�k‖

2 = �k‖
3 + �k‖

4 − �k‖
1 , where �k‖

2 is not restricted to the first SBZ.
Thus �k‖

2 is in the reaction plane, with the component

k‖
2 = (√

2E3 − √
2E4

)
sin ϑ3. (7)

The �k‖
2-resolved density of states Nm(E2, �k‖

2) for the mth
atomic layer parallel to the surface can therefore also be

represented by a contour plot in the (E3, E4) plane. In this
plot, the diagonal E3 = E4, on which k‖

2 = 0, can be viewed
as the E2 axis, and the other diagonal, which marks the Fermi
energy, is associated with k‖

2 (with a nonlinear scale according
to equation (7)).

In figure 5(a) the surface LDOS N1 for Cu(111) is
represented in this way for primary energy 30 eV and emission
in the (x, z) plane at polar angles ϑ3 = ϑ4 = 30◦. N1 in
figure 5(a) is seen to correspond to a small section (around

) of the surface LDOS along 
–M shown in figure 4(c). In
particular, it exhibits, near EF, the Shockley surface state.

Prior to presenting calculated pair emission cross sections
from Cu(111), we would like to address the relevance of
spin–orbit coupling (SOC). SOC in valence electron states
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as well as in LEED and LEPD states generally causes the
(p, ep) and the (e, 2e) cross section to depend on the
spin of the primary particle. Sizeable asymmetries of this
nature have previously been theoretically predicted [27] and
experimentally verified [9] for (e, 2e) from the large-Z material
W(001). In the presently studied case of Cu(111), they are,
however, quite small (of the order of a few per cent) for (e,
2e) because of the fairly low Z of Cu. For (p, ep) we found
them to be even smaller, by at least an order of magnitude.
To explain this, we recall that SOC effects are much smaller
in LEPD than in LEED [28]. Consequently, in (p, ep) only
two of the single-particle states (the outgoing electron state and
the valence electron state) are significantly affected by SOC,
whereas in (e, 2e) this applies to all four states. We therefore
do not elaborate on SOC effects in this work and present only
intensities averaged over the spin of the primary particle, which
corresponds to an experiment with an unpolarized source.

The calculated (p, ep) energy distribution I (E3, E4) for
E1 = 30 eV, which is associated with the surface LDOS
in figure 5(a), is shown in figure 5(b), with E3 and E4

denoting the energies of the emitted positron and electron,
respectively. For comparison, we show in figure 5(d) its
counterpart for spin-resolved (e, 2e), where E3 and E4 refer
to the emitted spin-up and spin-down electron, respectively.
While a substantial valence electron LDOS is obviously a
prerequisite for strong intensity features, both the Shockley
surface state and the d-like states manifest themselves in the
pair emission distributions in a very inhomogeneous way due
to differences in the final state wavefunctions in the integrals
in the intensity expression equation (1).

In the (p, ep) energy distribution (figure 5(b)), the
asymmetry with respect to the diagonal, i.e. to an interchange
of positron and electron energies, is immediately plausible
since the final state ‘fast positron, slow electron’ (below the
diagonal in figure 5(b)) is very different from the state ‘slow
positron, fast electron’ (above the diagonal). The strong
Shockley-derived intensity feature for the emitted positron
energy between 12.5 and 14 eV can be traced back to surface
resonances in the LEPD state, which are associated with the
emergence threshold for two non-specular LEPD beams.

In the fixed anti-parallel spins (e, 2e) energy distribution
(figure 5(d)), the Shockley surface state is seen to
appear symmetrically to the ‘equal-energy-sharing’ diagonal,
i.e. invariant to an interchange of the values of the energies
E3 and E4. This is readily understood: the sp-like Shockley
state is symmetric and the interchange does not alter the spatial
part of the final two-electron state. In contrast, some of the
valence d states (in the range 2–4 eV below EF, cf figure 4)
are antisymmetric, which entails an asymmetry of I (E3, E4)

in this energy range.
The spin-unresolved (e, 2e) energy distribution (fig-

ure 5(c)) is, as a consequence of exchange, the sum of a direct
anti-parallel spin part Id, which is actually the intensity shown
in figure 5(d), an exchange anti-parallel spin part Ie, which
is the mirror image of Id with respect to the diagonal, and a
parallel spin part Ipar, which is mirror-symmetric (cf [6, 7]).
I (E3, E4) in figure 5(c) is therefore symmetric and, Ipar be-
ing comparatively small, close to the sum of I (E3, E4) in fig-
ure 5(d) and its mirror image.

In the above energy distributions at constant emission
angles the valence state and the final two-particle state are
varied. For the study of correlation effects between the two
emitted particles, angular distributions obtained in a ‘constant
initial state’ set-up like the one shown in figure 6(a) is more
suitable. The primary particle has constant energy E1 and
surface-parallel momentum �k‖

1 , i.e. fixed polar and azimuthal
angles of incidence (ϑ1, ϕ1). For the emitted particles we
choose constant E3 = E4 and variable �k‖

3 = −�k‖
4 . According

to energy and parallel-momentum conservation the valence
state has thus a constant energy E2 and �k‖

2 = −�k‖
1 . The pair

emission intensity then depends only on �k‖
3 or, equivalently, on

(ϑ3, ϕ3).
In figure 6 we focus on the special case of normal

incidence of the primary particle and consequently �k‖
2 = 0.

Choosing further E1 = 30 eV and E3 = E4 = 12.3 eV, the
active valence electron is in the Shockley surface state at the
centre of the SBZ with energy E2 = EF − 0.4 eV.

In figure 6(b) we show the (p, ep) angular distribution
I (�k‖

3) calculated for this case. As one would qualitatively
expect, the intensity is largest in the centre, i.e. for small polar
emission angles ϑ . The mirror symmetry with respect to the
(y, z) plane and the threefold rotation symmetry about the
surface normal correspond to the C3v symmetry of the semi-
infinite Cu(111) crystal. The (e, 2e) angular distribution for the
case of fixed anti-parallel spins (figure 6(d)) also exhibits these
symmetries, but only very small intensities for small emission
angles. It is tempting to interpret this central depletion zone as
a Coulomb correlation hole (cf figures 5 and 6 in [7]). For the
present energies, however, an angular distribution calculated
without Coulomb correlation already exhibits, due to matrix
element effects, a depletion zone almost as pronounced as the
one shown in figure 6(d).

If the spins of the two electrons are not resolved, the
distribution (shown in figure 6(c)) becomes sixfold by adding
to the direct anti-parallel spin part Id an exchange anti-parallel
spin part Ie, which is rotated azimuthally by 180◦ with respect
to Id. Further, it contains a parallel spin part Ipar, which is
inherently sixfold due to exchange.

While the occurrence of a central accumulation zone in
(p, ep) as opposed to a central depletion zone in (e, 2e) appears
plausible, it is striking at first glance that also further out the
(p, ep) intensity is much larger than its fixed spins’ (e, 2e)
counterpart, e.g. for (kx, ky)/k around (0.65, 0.4) by a factor
of about 5. (Note the different scales on the colour bars.) To
what extent this is due to the difference between the positron
and electron single-particle states on the one hand and due to
the Coulomb correlation in the emitted pair state on the other
will be explored in the following.

In figure 7 we compare (p, ep) angular intensity
distributions calculated, for normal incidence of a positron
with energy 29 and 30 eV on Cu(111), without Coulomb
correlation in the emitted pair state (by taking the correlation
factor f c (cf equation (3)) as 1) (left-hand panels) with their
counterparts calculated with Coulomb correlation (by using the
numerically calculated f c) (right-hand panels). Please note
that in the plots the intensity of the ‘without’ panels has been
scaled up by a factor of two with respect to the ‘with’ panels.
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Figure 6. Angular distribution of the pair emission intensity from Cu(111) upon normal incidence of an unpolarized positron or electron beam
with energy E1 = 30 eV. The set-up is coplanar symmetric with fixed equal energies E3 = E4 = 12.3 eV and surface-parallel momenta
(kx

3 , k y
3 ) = (−kx

4 ,−k y
4 ) of the emitted particles. The relevant valence state is thus the bottom of the Shockley surface state with energy

E2 = EF − 0.4 eV and �k‖
2 = 0. (a) Sketch of the present (p, ep) set-up. The angles ϑ and ϕ determine the above surface-parallel momentum

components of the emitted positron as kx
3 = k3 sin ϑ cos ϕ and k y

3 = k3 sin ϑ sin ϕ, where k3 = √
2E3 = 0.95 Bohr−1. The (e, 2e) set-up is

analogous. (b) Intensity I (kx/k, ky/k) for (p, ep), where (kx , ky) := (kx
3 , k y

3 ) and k := k3. (c) Intensity I (kx/k, ky/k) for (e, 2e) not
spin-resolved. (d) Intensity I (kx/k, ky/k) for (e, 2e) with fixed anti-parallel spins of the emitted electrons.

The most important effect of the Coulomb correlation is, as one
would expect, a strong enhancement for small emission angles.
An enhancement, of about a factor of two, is however also
found for large emission angles. To understand this, we first
note that in the intensity formula equation (1) the correlation
factor f c(�r; �k) (cf equation (3)) can be taken out of the final
two-particle state |3, 4〉 and incorporated into the Coulomb
interaction U(�r). This amounts to an intensity formula with
a correlation-modified Coulomb potential

U c(�r; �k) = f c(�r; �k)U(|�r |) (8)

and an uncorrelated final two-particle state. Since for the
positron–electron pair | f c| is much larger than unity for small
k and r (cf figures 1 and 2), a strong enhancement of the
pair emission intensity at small angles is obvious. A closer
inspection of | f c| as a function of the momentum difference k
reveals that it is still fairly large for the maximal momentum
difference in the case of figure 7, which is reached at grazing
exit and amounts to 2

√
2E3 = 1.9 Bohr−1.

Returning to the above-raised question, why the ‘further-
out’ (p, ep) intensity around (kx, ky)/k = (0.65, 0.4) is
about five times larger than the corresponding (e, 2e) intensity
(cf figures 6(b) and (d)), the lower panels of figure 7 show
that the electron–positron correlation is responsible for a factor
of about two. On the other hand, the (e, 2e) intensity in
figure 6(d), which was calculated including electron–electron
correlation, is weaker by a factor of about two than its
counterpart without correlation. Consequently, the Coulomb
correlation is the main cause of this difference between (p, ep)
and (e, 2e).

The striking differences between the (p, ep) angular
distributions for primary energy 29 eV (upper panels of
figure 7) and primary energy 30 eV (lower panels of figure 7)
are due to numerical differences in the respective integrals in
equation (1). While correlation always enhances the central
region more strongly than the outer one, such ‘matrix element
effects’ may, as in the case of E1 = 29 eV, dominate, with the
consequence that there is eventually a central depletion zone
instead of a naively expected ‘correlation hill’.
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Figure 7. Correlation effect in the angular distribution of (p, ep) from Cu(111) upon normal incidence of a positron. The set-up is the same as
described in the caption to figure 6, with E1 = 29 eV and E3 = E4 = 11.8 eV (panels (a) and (b)), and E1 = 30 eV and E3 = E4 = 12.3 eV
(panels (c) and (d)), such that in both cases the electron is excited from the bottom of the Shockley surface state. The Coulomb correlation in
the emitted electron–positron pair state has been neglected (by taking the correlation factor f c (cf equation (3)) as 1) in the left-hand panels
(a) and (c), whereas it has been included (by using the numerically calculated f c) in the right-hand panels (b) and (d). Note that the intensity
scale in panels (b) and (d) is twice the one in panels (a) and (c).

The (p, ep) and (e, 2e) angular distributions in figures 6
and 7 have a pronounced feature in common: the circular
narrow structures, which intersect the kx/k axis around 0.65,
and those related to them by threefold rotation symmetry.
These structures are manifestations of surface resonances in
the LEED and LEPD states of the emitted particles, which
are associated with the emergence thresholds of non-specular
beams.

In the above ‘constant initial state’ angular intensity
distributions, the relevant valence electron is at the bottom
of the Shockley surface state at the centre of the surface
Brillouin zone (SBZ). In the following we consider analogous
(p, ep) angular distributions, which are associated with
valence electron states further out in the SBZ. Since parallel-
momentum conservation implies �k‖

2 = −�k‖
1 + �g‖, a specific

valence electron state can be selected by off-normal incidence
of the primary particle with an appropriate �k‖

1 .
Two typical examples of the resulting (p, ep) angular

distributions are shown in figure 8, for a 30 eV positron

incident with azimuthal angle ϕ1 = 90◦, i.e. in the (y, z)
mirror plane, and polar angle ϑ1. Thus �k‖

1 = (0, k y
1 ) =

(0,−√
2E1 sin ϑ1) and �k‖

2 = (0, k y
2 ) = (0,−k y

1 + gy), where
we choose the reciprocal lattice vector component gy such that
�k‖

2 is in the first SBZ. The emitted particle energies are chosen,
like in the previous examples, as E3 = E4 = 12.3 eV, which
implies E2 = EF − 0.4 eV.

In the first example, a valence state with k y
2 = 0.67,

i.e. associated with a high sp-like bulk density (cf figure 4),
is selected by choosing the angle of incidence ϑ1 = 26.5◦.
The resulting (p, ep) angular distribution (figure 8(a)), which is
necessarily mirror symmetric with respect to the (y, z) plane,
exhibits, like in the above normal incidence case, a central
accumulation zone due to the Coulomb correlation in the
emitted electron–positron pair. Also, further out the circular
structures due to LEPD and LEED surface resonances are
present, but with a much stronger weight on the feature around
ky/k = −0.6, i.e. with k y

3 = ky = −0.57, which is near to
k y

1 = −0.67 of the primary positron.
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Figure 8. Angular distribution of (p, ep) from Cu(111) for off-normal incidence of a positron with E1 = 30 eV. The emission set-up is the
same as described in the caption to figure 6. The positron is incident in the (y, z) plane at polar angle ϑ1 = 26.5◦ (panel (a)) and ϑ1 = 60◦
(panel (b)). According to energy and momentum conservation, the valence electron thus has energy E2 = EF − 0.4 eV in both cases, and
surface-parallel momentum (kx

2 = 0, k y
2 ) with k y

2 = 0.67 Bohr−1 for ϑ1 = 26.5◦ and k y
2 = 0.21 Bohr−1 for ϑ1 = 60◦.

For the larger angle of incidence ϑ1 = 60◦, we have
k y

1 = −1.29, which upon addition of the reciprocal lattice
vector component gy = 1.50 yields for the valence electron
k y

2 = 0.21. We recall from above that E2 = EF − 0.4 eV.
From figure 4 this valence state is seen to be in a region of
very low sp-like density of states. The corresponding (p, ep)
angular distribution is shown in figure 8(b). We notice again
the circular structures and a central Coulomb correlation hill,
which is however weaker than the one in figure 8(a).

Our finding that the central correlation hill and the circular
structures are fairly similar for different initial states and
identical final states is due to the fact that they are basically
final state features arising from the electron–positron Coulomb
correlation and LEPD/LEED surface resonances, respectively.

4. Concluding remarks

Loosely speaking, the positron–electron Coulomb correlation
is stronger than the electron–electron Coulomb correlation. We
have demonstrated this firstly for the pair correlation function
between two plane-wave particles coupled by a screened
or bare Coulomb interaction and secondly for the single-
particle potential describing the interaction with the solid, the
correlation part of which, while negative for both positron and
electron, is about six times larger in magnitude for the positron.
As a consequence of the latter, the total inner potential (at low
energies) for the positron is also negative despite the repulsive
nature of the electrostatic Hartree potential part.

While (p, ep) energy distributions for constant emission
angles reflect, to a large extent, the valence electron density
of states, equal-energy angular distributions for a fixed initial
two-particle state are most suitable for studying Coulomb
correlation effects. The latter tend to manifest themselves
in (p, ep) as a central accumulation zone (‘correlation hill’),
as opposed to a central depletion zone (‘correlation hole’) in
(e, 2e). Comparison with results, which we obtained without

Coulomb correlation in the emitted pair, shows, however, that
the relative intensity and extension of this central zone can
be strongly influenced by ‘matrix element effects’. Caution
is therefore required in viewing an observed central hill or hole
as a correlation feature. Further out, both the (p, ep) and the
(e, 2e) angular distributions exhibit narrow circular structures,
which arise from surface resonances in the outgoing (time-
reversed) LEED and LEPD states.

For Cu(111), we found the SOC-induced dependence on
the spin of the primary particle to be a few per cent for (e,
2e), and by at least an order of magnitude smaller for (p, ep),
since LEPD states are much less affected by SOC than LEED
states. We have therefore only shown intensities averaged
over the primary spin, which applies to an experiment with an
unpolarized source.

For ferromagnets, the dependence of the (p, ep) intensity
on the primary spin differs more fundamentally from that in
(e, 2e). While SOC produces an asymmetry in both cases
(which for 3d ferromagnets should be comparable to what
we presently obtained for Cu), the exchange-induced spin
dependence, which is sizeable in (e, 2e) (cf [5, 6, 8] and
references therein), is entirely absent in (p, ep), since positron
and electron are distinguishable particles. In principle, dipole–
dipole interaction between the incident particle and the valence
electron may lead to a further spin dependence of (p, ep) and
(e, 2e), which should, however, be extremely small.
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